- (c) Design a diagram codes for text files of interest to you.
 - (i) Explain the effect dictionary size and the size of the text file being encoded on the amount of compression.
 - (ii) Use the diagram coder on files that are not similar to the ones you used to design the diagram code. How much this affect your compression?
- 5 Attempt any two of the following:

 $10 \times 2 = 20$

- (a) Explain the steps of the Linde-Buzo-Gray algorithm.
- (b) What do you understand by predictive coding? Discuss multi resolution approaches.
- (c) Discuss the Tree-structured Vector Quantizers.

Printed Pages: 4

TCS-34

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0108

Roll No.

B. Tech.

(SEM. VII) EXAMINATION, 2008-09 DATA COMPRESSION

Time: 3 Hours]

[Total Marks: 100

Note :

0108]

- (1) Attempt all questions.
- (2) Assume data wherever not provided.
- (3) Be precise in your answers.

1 Attempt any four of the following:

5×4=20

- (1) Explain compression and reconstruction with the help of block diagram.
- (b) Based upon the requirements of reconstruction how data compression techniques are broadly classified? Explain these classifications in brief.
- Discuss the measures of performance of data compression algorithm.
- (d) Comment upon the statement:

 "Compression is still largely an art and to gain proficiency in an art you need to get a feel for the process."
- (e) Explain redundancy that exists in the data and how it is related with the model.
- (f) Explain Markov model

(a) Encode the following sequence of 16 values using the rice code with J=8 and one split sample option:

32, 33, 35, 39, 37, 38, 39, 40, 40, 40, 40, 39, 40, 40, 41, 40

for prediction use the previous value in the

sequence $\hat{y}_i = y_i - 1$

and assume a prediction of zero for the first element of the sequence.

- (b) Explain Adaptive Huffman coding. How is it different from Conventional Huffman coding?
- (c) What are the various applications of Huffman coding?
- (d) For an alphabet $A = \{a_1, a_2, a_3, a_4, a_5\}$ with probabilities $P(a_1)=0.1$, $P(a_2)=0.3$, $P(a_3)=0.25$ and $P(a_4)=0.35$.
 - (i) Calculate the entropy of this source
 - (ii) Find a Huffman code for this source
 - (iii) Find the average length of the code in (ii) and its redundancy.
- (e) For an alphabet $A = \{a_1, a_2, a_3\}$ with probabilities $P(a_1)=0.7$, $P(a_2)=0.2$, $P(a_3)=0.1$ design a 3-bit Tunstall code.
- (f) How do you achieve audio compression -- Explain.

3 Attempt any four of the following

(a) Given an initial dictionary consisting of the letter abry &, encode the following message using the LZW algorithm:

all bar b array b by b barrayar b bay

- (b) Discuss relative advantages of LZ 77, LZ 78 and LZW compression schemes.
- (c) What are adaptive compression schemes?
 What is the basic difference between adaptive and statistical compression scheme?
 Discuss with model of adaptive compression.
- (d) What are the differences between static length and variable length coding schemes?

 Why is Huffman compression called a variable length coding scheme?
- (e) Give a brief comparison of MH, MR, MMR and JBIG.
- (f) Differentiate between GIF image compression and JPEG image compression techniques.

Attempt any two of the following: 10×2=20

- (a) What do you understand by Uniform Quantizer?
 How uniform quantization of a uniformly
 distributed sources and uniform quantization of
 nonuniform sources is done?
- (b) Design a 3-bit uniform quantizer (specify the decision boundaries and representation levels) for a source with a Laplacian pdf with a mean of 3 and a variances of 4